
Beamforming Adaptive Acoustic Arrays
with Graphics Processing Units

Michael Romer
Department of Computers Sciences, Applied Research Labs

University of Texas at austin

Mission
To determine the utility of graphics processing units as a means of

hardware acceleration for adaptive beamforming in the context of

US Naval applications.

What is
beamforming?

Beamforming is a technique for determining the origin of a signal using an array

of acoustic sensors. Each sensor is omnidirectional, i.e., records acoustic data

(e.g., signal amplitude over time) equally from all directions.

	 What’s So Great
about gpus?

Technology Performance
(GFLOPS)

Reprogram-
mability Cost Power

Consumption
Form

Factor

Application
Specific

Integrated
Circuits
(ASICs)

30 - 50
average None Very

expensive Very low Very
small

Field
Programmable

Gate Arrays
(FPGAs)

20
average

Hardware Design
Languages

(HDL), Verilog
Moderate Low Small

General-purpose
Processors

(GPPs)/Clusters

50
peak

C, C++, Java,
etc.

Relatively
inexpensive High Large

Graphics
Processing Units

(GPUs)

330
peak

Shader
languages, C

with extensions
(e.g., CUDA)

Cheap Moderate Moderate

GPUs provide a cheap parallel computing device that potentially provide higher

performance per watt and performance per volume than any other means

of hardware acceleration for adaptive beamforming.

	 ...And How does it
work?

A signal propagates towards the array of acoustic sensors from a direction of arrival (DOA):

The beamformer weights the output of each sensor and sums all outputs together. The output of the beam-

former is the response, and for non-adaptive methods, the response is maximal in the steering direction

associated with the weights applied. Computing adaptive weights is computationally expensive and must

be derived on a per frequency, per direction basis. The optimal weights will yield a steering direction

that coincides with the observed signal’s DOA.

Acknowledgements
I would like to thank Dr. Bill Mark and Dr. Don Fussell for being my computer science faculty

advisors. Special thanks goes out to ARL for providing the IR&D funding for this project, and über mad

props goes out to my supervisor Greg Thomsen for all the time he’s dedicated in helping me make

this project happen and all the crap he’s had to tolerate because of it.

References
 H. Krim and M. Viberg, “Two decades of array signal processing research,”1.	 IEEE Signal Processing Magazine, vol. 13, no. 4, pp. 67-94, Jul.
1996.
 H. Cox, R. Zeskind, M. Owen, “Robust adaptive beamforming,” 2.	 IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 35, no. 10, pp.
1365-1376, Oct. 1987.

R.L. Walke, R.W.M. Smith, and G. Lightbody, “Architectures for adaptive weight calculation on ASIC and FPGA,” in 3.	 Conf. Rec. Thirty-
Third Asilomar Conf. Signals, Systems, and Computers, 1999, pp. 1375-1380.

NVIDIA Corp. (2007, November). 4.	 NVIDIA CUDA Compute Unified Device Architecture: Programming guide [Online].
Available: http://developer.download.nvidia.com/compute/cuda/1_1/NVIDIA_CUDA_Programming_Guide_1.1.pdf

TOP-D
OWN

VIEW Initial Results & Discussion
Compared to the reference Matlab implementation, the parallel GPU-based implementation yields a 2X speed-up;

however, a serial implementation written in C resulted in a 4X speed-up. This factor of two slowdown can be attributed

to the following:

Lack of highly optimized linear algebra libraries for the GPU, particularly a singular value decomposition •	

(SVD) solver.

GPU kernel makes no use of on-chip shared memory. Minimizing accesses to global GPU memory and effective •	

use of shared memory on each multiprocessor can lead to approximately an order of magnitude speed-up.

Pipeline requires more load balancing in order to minimize stalls at each stage.•	

−50

−40

−30

−20

−10

0

Direction of Arrival

Normalized
Response (dB)

Dotted line represents
beamformer’s steering

direction

A GPU-Centric,
Multithreaded Pipeline

Architecture!

3

1

SENSOR
DATA

BEAM-
FORMED

DATA
Stage 1

Construct frequency-independent •	
Cross-Spectral Matrix (CSM)
structures from input sensor data.
Write beamfored data to output •	
data stream.

2

Stage 2
Pool of worker threads.•	
Each thread works on one CSM at a time.•	
ABF only: Computes SVD of CSM and •	
proceeds to Stage 3.
CBF only: Computes CBF weights and •	
proceeds to Stage 4.

4

Stage 4
Pool of worker threads.•	
Each thread works on one CSM at •	
a time
Applies derived weights (CBF or •	
ABF) to the CSM data.

Stage 3
Implements GPU kernel.•	
Processes 32 CSMs at a time on the GPU.•	
GPU hardware architecture: GPU consists of 16 multiprocessors •	
(MP), each with 8 scalar stream processors (SPs) executed in
a SIMD fashion.
GPU software architecture: GPU consists of one compute grid •	
divided into a number of thread blocks, each containing a given
number of threads executing concurrently.
Each thread block scheduled to execute on a single MP.•	
GPU kernel defines grid dimensions.•	
Number of thread blocks equal to 32, and each thread block •	
processes one CSM (thus, 2 CSMs per MP).
Number of threads per block equal to number of directions •	
beamformer is steered.
Individual threads compute ABF weights for a single steering •	
direction of a given CSM.

CSMs Streaming Through GPU Multiprocessors

. . .

. . .
C S M 1 C S M N

M P 1 M P 1 6

