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Beamforming Adaptive Arrays with Graphics
Processing Units

Michael Romer

Abstract—Beamforming is a signal processing technique by
which an array of receivers sensitive to signals from all directions
can be processed to form one larger more sensitive receiver
that can identify which direction signals originate. Conventional
beamforming methods can allow signals from noisy interferers
to mask signals of interest if these interferers lie close to
those directions to which the beamformer is sensitive. Adaptive
beamforming (ABF) attempts to overcome this by minimizing the
beamformer’s output subject to certain constraints. At its core
ABF is an optimization problem, and a robust ABF procedure
that consistently provides an optimal solution is computationally
expensive. Nevertheless, ABF is of particular interest to the US
Navy, where personnel trained to analyze acoustic data from
sonar receivers can locate and track quiet targets of interest, e.g.
submarines, that may be masked by sources of both ambient and
directional noise in the ocean.
ABF can be implemented to operate concurrently on sets of

frequency-independent data, thus making ABF well-suited for
parallel processing. Additionally, due to ABF’s high density of
arithmetic operations, it is a suitable candidate for implemen-
tation on modern graphics processing units (GPUs). GPUs have
been designed to quickly perform many concurrent arithmetic
operations on large amounts of data. Furthermore, as of early
2007 they have reached a point at which they are not only capable
of performing general-purpose tasks completely unrelated to
graphics but also can be programmed to do such tasks far more
easily and more naturally than has previously been possible.
I show a method for parallelizing an existing serial ABF

algorithm on an NVIDIA Geforce 8800 GTX, one of the first
GPUs to use a generalized stream processor-based architecture. I
take a single program, multiple data (SPMD) approach where the
same software kernel executes over multiple blocks of frequency-
independent data in parallel. Further parallelism is exploited
by subdividing each block into smaller subsets, independent
of the direction the array is steered, and operating on these
concurrently. Although initial results indicate that the GPU-based
beamformer yields lower throughput than its serial counterpart,
a number of possible optimizations are discussed that can allow
the GPU implementation to match, if not exceed, the serial
implementation.

I. REVIEW OF CONVENTIONAL AND ADAPTIVE
BEAMFORMING

This section serves to give to the reader unfamiliar with
beamforming the information necessary to understand its
fundamentals and why it poses itself as a computationally
complex problem. Those who are familiar with beamforming
may choose to proceed directly to Section II on page 4.
As a matter of convention, bold faced lowercase and upper-

case letters represent vector and matrix quantities, respectively.
AT and AH denote the transpose and conjugate transpose of
A, respectively, and, unless specified otherwise, all vectors are
assumed to be row vectors. Additionally, the conjugate of a
complex number z is given by z∗.

For the purposes of discussion, it is assumed that all appli-
cations of beamforming are within the context of underwater
acoustics, where the signals of interest are the results of sound
waves propagating through the ocean. However, it should be
noted that these techniques are not necessarily restricted to
acoustic signals and in general may be applied to any type of
propagating signal [1].

A. Overview
A beamformer is a system that uses a collection of L omni-

directional acoustic sensors, referred to as an array, in order
to localize specific signals within the array’s environment.
Each sensor samples the acoustic signals in its environment
at discrete intervals of time. As described in [1], it is common
to model the output of sensor l, denoted by x l(t), in response
to a signal s(t) consisting of a single frequency component as

xl(t) = al(! )s(t), (1)

where al(! ) is a precomputed, complex constant of propor-
tionality based upon some assumption of how s(t) travels
through the ocean when originating from a direction of arrival
(DOA) ! and arriving at sensor l. It should be noted that a l(! )
is also dependent upon the signal being considered.
The output of the entire array x(t) in the presence of a

single signal originating from DOA ! is simply the outputs
from each of the sensors given by

x(t) = [x1(t), . . . ,xL(t)]T = a(! )s(t). (2)

Here a(! ) = [a1(! ), . . . ,aL(! )]T is a unit length vector
called the steering vector or replica vector of the signal.
Collectively the steering vector represents how the signal is
recorded by the individual sensors as it approaches the array
from a given DOA. When a signal approaching from a specific
DOA is considered, the array is said to be steered in that direc-
tion, which is sometimes called the array’s steering direction
or look direction. If there are M signals in the environment,
then the output of the array is simply the superposition of each
signal sm(t):

x(t) =
M

"
m=1

a(!m)sm(t) = A(! )s(t), (3)

where A(! ) = [a(!1), . . . ,a(!M)] and s(t) = [s1(t), . . . ,sM(t)]T .
When in the presence of environmental noise n(t), the final
output of the array is modeled as:

x(t) = A(! )s(t)+n(t) (4)
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The beamformer receives the output of the array, weights
each of the component sensor outputs by a corresponding
complex scalar wl , and then sums all of the weighted compo-
nents together. Thus, the output or response of the beamformer
y(t) is the following linear combination of each of the sensor
outputs:

y(t) =
L

"
l=1

w∗
l xl(t). (5)

Note that it is by convention that each sensor output is
multiplied by the complex conjugate of the corresponding
weight [2]. By letting w = [w1, . . . ,wL], (5) can be written
more succinctly in vector notation as:

y(t) = wHx(t). (6)

In beamforming the individual signals and their DOAs are
not known a priori. Furthermore, these signals typically occur
in the presence of noise from both ambient and directional
sources in the ocean. Ambient noise is simply the noise
inherent in the environment that appears to arrive from all
directions. Directional noise sources, on the other hand, emit
discrete sounds and can be anything from merchant ships
and warships to whales and other marine life that inhabit the
environment being monitored. In US Naval applications, it
is common to identify those signals that are of interest, e.g.
submarines, and to have the beamformer compute weights that
give the best DOA estimate for each signal.
Finding the optimal set of weights generally consists of

assuming that the signal of interest approaches the array from a
number of different directions and steering the array in each of
these directions by computing a corresponding weight vector.
The output power of the beamformer PBF(w) is then measured
using each computed weight vector as follows:

PBF(w) = |y(t)|2 = |wHx(t)|2

= wHx(t)xH(t)w
= wHRw. (7)

Here R is typically termed the cross spectral matrix (CSM).
The weights that produce the maximal output power corre-
spond to the steering direction that is the best estimate for
the signal’s DOA. Note that because it is typical to consider
many different signals, each of which could possibly come
from a number of directions, weights must be computed and
evaluated on a per frequency, per direction basis in order to
properly find the optimal set.
Different beamforming algorithms apply different sets of

constraints and optimality conditions in order to compute the
optimal weight vector. An extensive overview of some of
the different types of beamformers is given in [2], but for
the purposes of this project only two broad categories of
beamformers are considered: conventional beamformers and
adaptive beamformers.

B. Conventional Beamforming
Conventional beamforming (CBF) represents a classification

of beamforming algorithms whose computed weight vectors
do not depend on the output of the array. Instead conventional

Figure 1. A sinusoidal plane wave s(t) approaching a uniform linear array
(ULA) from a DOA ! . Note that the wavefront arrives at each sensor at
slightly different times, resulting in the sensor outputs becoming out of phase
with each other.

beamformers use what is known as a delay and sum technique,
where each sensor output is delayed in order to bring all
of the outputs in phase with each other. The delayed sensor
outputs are summed together, and the result is normalized, thus
allowing each sensor to maximally contribute to the output of
the beamformer.
To illustrate, consider an array of sensors arranged in a line

spaced equidistantly apart. Such an array is commonly known
as a uniform linear array (ULA). Figure 1 shows a top-down
view of a sinusoidal wave s(t) approaching the ULA from a
DOA ! . Note that the wavefront will arrive at each sensor at
different times, thus the output of each sensor will be out of
phase with all other sensor outputs.
In the absence of any weighting, the beamformer would

sum each of the out-of-phase sinusoids together, resulting
in constructive and destructive interference that produces an
output that differs from the original signal. However, if the
output of each sensor is weighted such that all sensor outputs
are brought into phase with each other, then the beamformer
output will match the original signal observed and total output
power will be maximized.
It can be shown that an optimal set of power maximizing

weights wCBF can be found that depends solely on the steering
vector a(! ) [1]:

wCBF =
a(! )√
aH(! )a(! )

. (8)

When these weights are applied to (6), they effectively add
a time delay to each of the sensor outputs, thus bringing them
into phase with each other, and normalize the beamformer’s
response. The response of the beamformer in the DOA of the
observed signal is thus maximized, and as a result of this
time delay, a spatial filtering occurs that either attenuates or
completely nullifies signals approaching from other DOAs.
The normalized response of a conventional beamformer

when a given set of CBF weights is applied can be plotted as
a function of DOA as shown in Figure 2. These beam patterns
are comprised of a main lobe that coincides with the DOA of
the signal of interest and realizes maximum response, as well
as a number of sidelobes that only realize partial response.
A number of nulls are also generated where the beamformer
effectively has no response.
The advantage of CBF is that the weights can be computed
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Figure 2. A beam pattern is comprised of a number of lobes. The lobe
with the greatest response, called the main lobe, is aligned along the steering
direction of the array and typically corresponds to the best estimate for the
signal’s DOA. Additional sidelobes lie along those directions to which the
array is less sensitive, and the nulls between any two lobes represent those
directions to which the array has effectively no response.

relatively quickly from the steering vectors alone. Further-
more, since the weights do not depend on the sensor data, they
can be computed in advance and applied as many times as nec-
essary. However, because the steering vectors are precomputed
on a per frequency, per direction basis, the beam pattern for a
given set of steering vectors and sensor data set is fixed. As a
result, if a noisy interferer lies just off the DOA of the targeted
signal, the beamformer will indiscriminately be sensitive to
both the target and the interferer. In naval applications, targets
such as submarines tend to emit low level signals, and the
presence of noisy interferers in the environment more often
than not results in the interfering signal dominating the target
signal in the beamformer’s output.

C. Adaptive Beamforming
Adaptive beamforming (ABF) attempt to overcome the

problems associated with CBF by computing weights that re-
duce the beamformer’s response to loud interferers while pre-
serving response in the steering direction. Adaptive techniques
typically correlate the output of the array with the weights
computed in order to derive the optimal set of weights [3].
Many ABF algorithms exist, a number of which are discussed
in detail in [4]-[8] and whose individual performances and
merits are evaluated and compared in [9]-[13].
The beamformer selected for parallelization belongs to a

class known as linearly-constrained adaptive beamformers.
These beamformers compute weights such that the total output
power is minimized while imposing some linearly constraint
on the beamformer’s response. As suggested in [14], the
constraint imposed is to maintain unity response in the steering
direction of the array; that is, signals arriving along the
steering direction are neither amplified nor attenuated. Thus
these beamformers are typically termed minimum variance,
distortionless response (MVDR) beamformers whose optimal-
ity condition is expressed as

min
w
wHRw subject to wHa(! ) = 1. (9)

Using Lagrange multipliers (9) can be solved to yield the
following optimal ABF weights [15], [16]:

wABF =
R−1a(! )

aH(! )R−1a(! )
. (10)

Note that the calculation for the ABF weights consists of
significantly more operations than that of the CBF weights
given in (8). In general, for ABF the cross-spectral matrix
R must be computed and inverted, which is commonly per-
formed by estimating R from the sensor data and employing
a singular value decomposition (SVD) in order to compute
its pseudoinverse [41]. In practice, the SVD is favored over
other means of matrix decomposition for a number of reasons,
namely:

• The approximation for the cross-spectral matrix R is
not guaranteed to be well-conditioned, thus procedures
such as the SVD are highly favored for their numerical
robustness.

• Certain variations of MVDR beamformers, such as Dom-
inant Mode Rejection (DMR), adapt against only the
D loudest interferers in the environment, where D is a
parameter set prior to beamforming and the interferers
correspond to the D largest eigenvalues of the cross-
spectral matrix R. The SVD has the advantage over other
methods of solving for eigenvalues that the eigenvalues
of R can be calculated directly from the singular values
of the sensor data x(t) (recall that R= x(t)xH(t), where
x(t) is the sensor data, and the squares of the non-zero
singular values of x(t) are the non-zero eigenvalues of
R).

For an mxn matrix the SVD has a known runtime complexity
of O(min(mn2,nm2)), and since these calculations must be
performed on a per frequency, per direction basis, ABF
weight derivation is considered a computationally expensive
operation.
By imposing a distortionless response constraint in the

steering direction, the beamformer is forced to steer nulls
in the directions of loud interferers not along the steering
direction in order to minimize output power. However, (10)
assumes the steering direction coincides with the DOA of the
signal of interest, which is frequently not the case in practice.
Errors in the steering vectors known as mismatch can actually
cause the adaptive beamformer to steer a null in the direction
of the desired signal, a problem known as squinting.
Different methods for dealing with mismatch have been pro-

posed in the literature, including [7] and [8]. The beamformer
selected for parallelization uses the latter approach, which
imposes an additional white noise gain constraint (WNGC) on
the optimization in (9). This approach attempts to control the
adaptivity of the beamformer by introducing a penalty for ABF
weights that generate large sidelobes. The additional constraint
modifies the weight computation in (10) to be:

wABF =
(R+ #I)−1a(! )

aH(! )(R+ #I)−1a(! )
. (11)

Here I is the identity matrix, and # is a parameter that
controls the adaptivity of the beamformer. If # = 0, then (11)
becomes the ABF weight equation given in (10), and as #→$,
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the weights computed tend toward the CBF weights in (8).
Ideally the beamformer computes a value for # that satisfies
both constraints, thus yielding a high amount of adaptivity
while avoiding squinting; however, determining a suitable
value for # requires an iterative search such as Newton’s
method, adding further to the complexity of deriving optimal
ABF weights [10].

II. PREVIOUS MEANS OF HARDWARE ACCELERATION
In order to cope with ABF’s computational complexity and

the large data sets generated by acoustic arrays, it used to be
the case that specialized signal processing hardware had to be
employed to realize any sort of practical performance. While
this approach is still the only viable option for certain appli-
cations, the advancements in technologies such as multicore
processors, multiprocessor systems, and field programmable
gate arrays have made these technologies attractive alternatives
for lower-budget and smaller-scale operations.
The following is an survey of these technologies, their ad-

vantages and disadvantages, and comparisons of their relative
performance in beamforming related applications, leading to
a justification for the use of graphics processing units as a
means of hardware acceleration.

A. Application Specific Integrated Circuits
Prior to 1990, military-related sonar applications predom-

inantly used custom-made, dedicated hardware to perform
much of the computationally intensive signal processing pro-
cedures necessary for these systems [17]. These pieces of
hardware, also known as application specific integrated circuits
(ASICs), are designed specifically for their intended use, thus
they are capable of yielding higher performance than most
other alternatives. In ABF applications, ASICs have been
used to realize speeds as much as 30-50 GFLOPS [18], [19].
Also, due to their special-purpose nature, they can be built
on a smaller and more compact scale than general-purpose
hardware thus yielding better performance in terms of power
consumption. It has been observed in ABF scenarios that
ASICs are able to have as much as an order of magnitude less
power consumption than field programmable gate arrays [20].
Despite their superior performance capabilities, ASICs are

prohibitively expensive for many small- to medium-scale op-
erations. This is due in part to the high non-recurring fixed
costs spent in producing a suitable ASIC [21]. Typically a
team of engineers is needed in order to create a design for
the desired circuit and perform extensive hardware verification
to ensure that it will perform according to its specifications,
all of which adds substantially the overall cost of producing
an ASIC. Additionally, these devices provide no means of
reprogrammability, thus limiting their potential for reuse in
varying situations.

B. Field Programmable Gate Arrays
Field programmable gate arrays (FPGAs) provide a compro-

mise between ASICs and general-purpose processors. Modern
FPGAs possess some of the features that make ASICs attrac-
tive such as increased speed and lower power consumption

over general-purpose processors while making it possible to
reconfigure their internal logic structure on the fly by upload-
ing user software to the device [22]. These devices have been
successfully programmed to execute core ABF functionality
with observed speeds of 20 GFLOPS [20], [23].
Despite their advantages, FPGAs are still not as efficient as

ASICs in terms of size, power, and raw performance [24].
Additionally, since it is common to write FPGA code in
a hardware description language such as Verilog, software
development times can be significantly longer than for a
conventional general-purpose system [21].

C. General-Purpose Processor Systems
For many years the common trend in the general-purpose

processor market has been to scale up the raw clock speed
of a single processor, but, as it has been pointed out in [25],
in recent years this method has reached a brick wall of sorts.
This is the result of the culmination of three separate problems
that have manifested as technology scaling has increased over
time:
1) Single core processors cannot increase in transistor
density and still be made power efficient.

2) As processor clock speed increases over time, latency
incurred by accessing DRAM increases proportionally.

3) Beyond techniques such as branch prediction and out-of-
order execution, there are diminishing returns for trying
to exploit any further instruction level parallelism.

It has been argued that because of these problems it is all
the more important that general-purpose systems move away
from a uniprocessor approach and head towards making a
multicore/multiprocessor paradigm the norm.
As has been pointed before, the problem of computing

optimal weights for beamforming is one that must be done
on a per frequency, per direction basis. This naturally lends
itself well to parallelization. Many different means of imple-
menting beamforming on parallel systems such as clusters and
networks of distributed computers have been explored in [3]
and [26]-[29] and have succeeded in gaining increased perfor-
mance over their serial counterparts; however, the performance
of these systems still does not match that of those systems
based on either ASICs or FPGAs.
Another disadvantage is that in certain military applications

where physical space is a premium and power requirements are
stringent, e.g on an actual ship, these multiprocessor systems
can be impractical or simply infeasible due to their higher
power consumption and the larger physical size of their nec-
essary peripheral hardware. Nevertheless, advances in general-
purpose systems, their significantly lower costs compared
to ASICs, and the relative ease of developing software for
them compared to FPGAs have led defense contract sponsors
to invest more heavily into these commercial off-the-shelf
(COTS) systems within the past decade [30].

D. Graphics Processing Units
The use of graphics processing units (GPUs) for general-

purpose computations began as an area of research in the early
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NVIDIA
Geforce 8800

GT
Intel Xeon 5160

Number of Processing
Elements 112 2

Clock Speed per Element
(GHz) 1.5 3.0

Memory Interface 256 bit 64 bit

Memory Clock Speed
(MHz) 900 1333

Peak Computation
Performance (GFLOPS) 336 48

Peak Memory Bandwidth
(GB/sec) 57.6 21.3

Max Power Consumption
(watts) 110 80

Cost $200 $879

FLOPS per Dollar 1.68 0.05

FLOPS per watt 3.05 0.6

Table I
COMPARISON OF NVIDIA GEFORCE 8800 GT GPU TO INTEL XEON

5160 CPU.

2000s when graphics cards with programmable units called
shaders were first introduced [31], [32]. GPUs have since
garnered the attention of many researchers who have tried
to use them to accelerate different problems such as linear
algebra solvers, traffic simulations, and data mining [33], [34].
What makes the GPU a compelling platform to explore is

its potential computational power. Over the years in response
to the growing demand for more realistic graphics in the in-
teractive gaming market, commercial GPUs have transformed
into highly data parallel devices with high-bandwidth memory
controllers. This has ultimately resulted in a parallel coproces-
sor capable of outperforming general-purpose CPUs in terms
of both FLOPS and memory bandwidth [33], [35]. Table I
summarizes the differences between NVIDIA’s Geforce 8800
GT graphics card and an Intel Xeon 5160 dual-core server
class CPU, each based on NVIDIA’s G92 graphics architecture
and Intel’s Core microarchitecture, respectively. Hardware
specifications were obtained and performance metrics derived
from product specifications given by each respective manu-
facturer [42], [43], and costs given are based on current retail
prices as of April 2008.
Here a processing element refers to a core in the CPU or

a shader in the GPU. The shaders, or stream processors as
they are called within the context of NVIDIA’s G80 and G92
graphics architectures, are purportedly capable of issuing one
floating point multiply and add (MAD) instruction and one
floating point multiply (MUL) instruction and retiring their
results each clock cycle, yielding 3 floating point operations
per cycle or 504 GFLOPS [37]. However, since the conditions
necessary for consistent issuing of the second MUL instruction
are not known, it is a more reasonable to assume that on
average only the MAD instruction is issued, thus resulting
in the 336 GFLOPS of peak throughput.

As can be seen from Table I, GPUs potentially offer
superior performance both in terms of FLOPS per dollar
and FLOPS per watt consumed. Furthermore, they are also
capable of offering more performance per unit volume. A Dell
PowerEdge M600 blade server stocked with dual Intel Xeon
E5450 3.0 GHz quad-core processors offers 192 GFLOPS of
peak performance, whereas an NVIDIA Tesla Server stocked
with four GPUs offers a peak compute power of approximately
2,000 GFLOPS [38]. Both solutions fit in a 1U form factor,
thus the GPU has the capability of providing much more
computational power than general-purpose systems in the same
amount of space.
In addition to their raw computational power, GPUs based

on NVIDIA’s G80 and subsequent architectures also share
some of the same advantages that general-purpose processors
have over ASICs and FPGAs, namely their lower cost and
the relative ease of developing software for the hardware.
Prior to the G80, programming for the GPU required one to
cast the problem being solved in terms of a graphics-related
problem. Data sets would be treated as either texture or vertex
data, small programs, sometimes called kernels, written in
a graphics-centric shading language would execute over the
“graphics” data on the GPU, and the results would be written
or “rendered” to another texture as output. Nowadays, with
the use of NVIDIA’s Compute Unified Device Architecture
(CUDA), developers can write GPU kernels using simply C
with a minimal set of extensions that declare those portions
of the code that execute on the GPU and those portions that
execute on the CPU. This allows developers to write software
for the GPU in a manner that is more natural since it is
not necessary to reinterpret the problem at hand in terms of
graphics.
Despite their strong advantages, GPUs do pose their own

problems. In general the GPU programming model is incon-
sistent across various GPUs. For instance, NVIDIA GPUs
based on architectures older than G80 cannot make use of
CUDA, and developing software for these GPUs requires that
the kernels are written in some sort of shading language.
Furthermore, if portability across GPUs is important, it is
necessary that the GPU kernels are written using a graphics
API in conjunction with some shading language, e.g. OpenGL
with GLSL.
Another area of concern for many researchers in the sci-

entific computing field has been compliance to the IEEE
754 specification for floating point numbers. While most
GPUs conform specification for the storage of floating point
numbers, the arithmetic performed is not fully compliant. In
the case of G80-based GPUs, a number of deviations from
the IEEE 754 specification are given in [39], some of which
include differences in the algorithm used for the division of
two floating point numbers, the rounding modes used, and the
treatment of denormalized numbers.
In spite of these disadvantages, the potential computational

power of a GPU warrants further exploration. Their highly
parallel design and their strong performance in quickly ex-
ecuting floating point operations make GPUs a particularly
suitable target hardware for the implementation of an adaptive
beamformer. Furthermore, due to their relative strengths versus
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other means of high performance computing, GPUs provide
a solid compromise in terms of throughput, power consump-
tion, size, and price that makes them an attractive means of
hardware acceleration for small- to medium-scale applications.

III. INTRODUCTION TO THE NVIDIA GEFORCE
8800 GTX AND CUDA

A. Hardware Organization

For this project, I use an NVIDIA Geforce 8800 GTX
graphics card, which is based on the G80 graphics architecture
developed by NVIDIA and implemented on graphics cards
released as early as the beginning of 2007. Table II lists many
of the hardware specifications of the Geforce 8800 GTX.

NVIDIA Geforce 8800
GTX

Number of Stream Processors 128

Clock Speed per Stream
Processor (GHz) 1.35

Memory Interface 384 bit

Memory Clock Speed (MHz) 900

Peak Computation
Performance (GFLOPS) 345

Peak Memory Bandwidth
(GB/sec) 86.4

Max Power Consumption
(watts) 280

Table II
NVIDIA GEFORCE 8800 GTX HARDWARE SPECIFICATIONS

The G80 architecture marks a significant departure from
previous graphics architectures and introduces a number of
changes, namely the support of what is known as the unified
shader model. Rather than following the traditional GPU
pipeline of having different processor groups for each stage of
rendering, e.g. vertex processing and pixel fragment shading,
the unified shader model uses a collection of generalized scalar
stream processors that can be used for any of the operations
executed in the traditional pipeline. This allows for potentially
better utilization of the graphics hardware because the stream
processors can be allocated for various tasks on an as-needed
basis by the GPU. More information on the G80 architecture
and its unified shader architecture can be found in [37].
Figure 3 shows the hardware layout of the Geforce 8800

GTX. This GPU specifically consists of 128 stream processors
divided into 16 groups of eight stream processors each. Each
group is termed a multiprocessor, and each multiprocessor’s
set of eight stream processors executes simultaneously in
a SIMD fashion. Each multiprocessor also consists of a
small 16 KB portion of on-chip memory called the parallel
data cache which is divided into 16 equally sized banks.
A multiprocessor’s parallel data cache is only accessible by
those stream processors located on the multiprocessor and
implements the shared memory space among the processors,
thus the parallel data cache is sometimes also simply referred

to as shared memory. Each multiprocessor also consists of on-
chip read-only constant and texture caches, which are designed
to speed up transactions to and from constant memory and
texture memory, respectively. In addition to the different types
of on-chip memory, the Geforce 8800 GTX has a large amount
of DRAM not located on any of the multiprocessors and is
globally accessible by any stream processor, hence its name
global memory.
One of the main advantages of putting the shared memory

in such close proximity to the individual stream processors is
that it allows for fast memory transactions to and from the
shared memory space. It takes, on average, four cycles for a
stream processor to issue either a read or write instruction to
memory, and assuming no bank conflicts, accessing shared
memory takes no longer than accessing a register. On the
contrary, accessing data residing in global memory takes an
additional 400-600 cycles [39].
It is also important to note that the GPU’s global memory

is not cached. It is therefore imperative to stage as much
data within the shared memory in order to minimize latency
incurred from accessing global memory.

B. NVIDIA’s Compute Unified Device Architecture
NVIDIA’s Compute Unified Device Architecture, or more

commonly referred to as CUDA, makes it possible for de-
velopers to access the graphics hardware for general-purpose
computations. CUDA treats the GPU as a compute device that
can execute a large number of threads in parallel. Figure 4
illustrates the organization of threads executed on the GPU.
Software called kernels are written for the device in such
a manner that each kernel makes use of a large number
of threads when executed. In CUDA, all threads used by a
single kernel are organized into a single compute grid, with
the grid being divided into a number of thread blocks. Each
thread block consists of an equal number of threads, and
individual thread blocks are issued to run on a single physical
multiprocessor on the GPU. As a consequence, threads in
different thread blocks cannot communicate or synchronize
with each other.
CUDA kernels are written in either C or C++ and make

use of the CUDA Device and/or Driver APIs. The kernels
make use of a small number of extensions added to C/C++
that specify whether the code is to run on the GPU or the
CPU. In CUDA, the GPU and CPU are referred to as the
device and host, respectively, with functions designated for
the device being declared with the either the __global__
or __device__ type qualifier. Host functions may optionally
specify the__host__ type qualifier, but if no type qualifier is
given, it is automatically assumed to be compiled for the host.
Table III lists all available type qualifiers along with relevant
information for each.
Once a CUDA kernel has been implemented, it is compiled

using NVIDIA’s nvcc compiler driver [44]. The driver will
perform the preprocessing necessary to separate host code
from device code and send each to the appropriate compiler.
Host code is compiled using the host platform’s compiler tools,
and device code is sent to a specialized compiler provided
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Figure 3. Hardware organization of the Geforce 8800 GTX. The GPU consists of a large global DRAM and 16 multiprocessors. Each multiprocessor has
eight scalar stream processors that can access any of the different memory caches available on the multiprocessor, including a bank of registers per processor,
a shared parallel data cache, a texture cache for texture memory, and a constant cache for constant memory. Note that there is no caching for data stored in
the global memory.

Figure 4. A single GPU kernel is executed as a batch of threads. The threads
are organized as a single compute grid, which is divided into a number of
thread blocks indexed by either a 1- or 2-dimensional thread block ID. Each
thread block contains the same number of threads, each of which are accessed
by either a 1-, 2-, or 3-dimensional thread ID.

by NVIDIA. This compiler will form a binary image that
is typically embedded with the final compiled binary and is
loaded by the CUDA runtime driver for execution on the GPU.

Further information on the CUDA software model and the
extensions and APIs provided is given in [39].

Type Qualifier Callable By Executed On

__global__ Host Device

__device__ Device Device

__host__ Host Host

Table III
SUMMARY OF TYPE QUALIFIERS FOR CUDA FUNCTIONS

IV. IMPLEMENTING ADAPTIVE BEAMFORMING ON THE
GRAPHICS PROCESSING UNIT

Following is a discussion of the ABF algorithm being paral-
lelized, as well as the details of the final system implemented.

A. Implementation Overview
Prior to the execution of the beamformer, the input sen-

sor data is transformed via a Fast Fourier Transform (FFT)
in order to divide the input sensor data into its frequency
components. The basic ABF algorithm then divides the input
data into frequency-independent blocks known as CSMs. In
this implementation, the CSM structures represent only an
approximation of the true cross spectral matrices used in
deriving ABF weights. Here each CSM also corresponds to a
frequency for which the beamformer wants to derive weights
and effectively “listen” in on.
The implemented system actually supports both CBF and

ABF. If a particular CSM only requires CBF weights, then
the system will bypass the ABF weight derivation procedure,
derive the CBF weights from the input steering vectors, and
apply them to the input sensor data. However, if ABF weights
are required, then the following steps must be performed for
each CSM on which ABF is performed:
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1) Compute the singular value decomposition (SVD) on the
matrix containing the input sensor data in order to obtain
the matrix’s singular vectors and singular values.

2) Transform the singular values of the data matrix into the
eigenvalues of the cross spectral matrix.

3) Use the eigenvalues and singular vectors to construct the
pseudoinverse of the true cross spectral matrix.

4) Calculate an initial set of ABF weights for each direction
the beamformer will be steered for this CSM using the
passed in initial guess for # , the input steering vectors,
and the inverted matrix computed in the previous step.
Also calculate the gain of the white noise each set
of weights allows to pass through to the beamformer
output.

5) Check to see if the associated white noise gain computed
in the previous step falls within the beamformer’s white
noise gain constraint for each steering direction. For
those steering directions that satisfy their white noise
gain constraint, the associated weights are written to an
output buffer. For those that did not meet their constraint,
set the current value for # as the new upper or lower
bound for # , depending on whether the white noise gain
respectively fell above or below its constraint.

6) Perform a bisection search for # by using the midpoint
between the new upper and lower bounds for # . Repeat
steps 4-6 using this midpoint as the new guess for #
until either all steering directions have satisfied their
white noise gain constraint or the maximum number
of iterations for the bisection search has occurred. If
a subset of the steering directions has not yet met its
white noise gain constraints, then the last set of weights
for each steering direction in that subset is taken to be
that direction’s final ABF weights.

7) Apply the final ABF weights to the input sensor data in
order to compute the beamformer’s final output.

Since CSMs represent the fundamental units of work in
this algorithm, the system naturally parallelizes across them.
Furthermore, as noted in Step 4 above, individual steering
directions also represent independent units of work within a
CSM. The system I implement attempts to take advantage of
both of these course- and fine-grained levels of parallelism
within the ABF algorithm. Further details on how this par-
allelism is exploited by the GPU will be given later, but
first a brief discussion on an initial GPU implementation that
failed is given. In particular, the reasons for failure provide the
motivation and rationale for the current software architecture
employed.

B. 100% Pure GPU - A Failed Approach
By design, the initial implementation consisted of a pure

GPU approach in which the kernel compiled for the Geforce
8800 GTX would execute all steps listed in Section IV-A on
the previous page. While conceptually sound, this approach
was never realized due to the inability to compile an SVD for
the GPU. It should be noted that during the time of imple-
mentation there existed no linear algebra libraries for CUDA.
As a result, I hand-wrote much of the linear algebra code

necessary for the ABF algorithm, much of which consisted
of matrix-matrix multiplication, matrix-vector multiplication,
and vector-based operations. However, in the interest of time,
instead of attempting to hand-write an SVD, I had ported the
LAPACK routine CGESVD and all its dependencies, located
in the University of Tennessee’s Netlib repository [45], to the
GPU using CUDA.
Attempts to compile the SVD code resulted in complete

failure. While the code itself had been demonstrated to run cor-
rectly on the CPU, any attempts to simply compile the source
code for the GPU using nvcc would result in the consumption
of all system resources. Specifically, all physical and virtual
memory on the system would be exhausted, resulting in either
the compiler process being killed by the operating system or
the system becoming completely unresponsive. The compiler
had been tested on systems with RAM ranging from 2 GB to
16 GB with no discernible difference in the end result.
Initially it was believed that a cycle might have been present

in the SVD’s call graph. Such a situation would pose a serious
problem since CUDA kernels do not maintain a stack for any
of the executing threads and thus cannot contain recursive
code. By default, calls to device functions within the kernel
are inlined, and thus, barring no such bugs in the CUDA
compiler, the compiler could potentially inline cycles in the
call graph indefinitely. This proved to be irrelevant, however,
after generating a call graph for CGESVD and noticing no
cycles existed.
Without the ability to compile the converted CGESVD

routine for the GPU, the options became either hand-writing
an SVD or developing a new software architecture to work
around this problem by moving the SVD off the GPU and onto
the CPU. In the interest of producing a functioning system, I
opted for the latter, and what follows is a discussion of the
approach taken.

C. A GPU-Centric Parallel Pipelined Approach
As alluded to previously, the current software architecture

uses a hybrid approach where the CPU is primarily responsible
for computing the SVD of the input data, while the GPU
performs the remainder of the ABF weight derivation. A four
stage pipelined architecture is implemented where each stage
runs in parallel and operates on individual CSMs. Figure 5 on
the following page shows a high level overview of the data
flow for the entire pipeline.
The entire pipeline is implemented as a collection of worker

threads maintained by one master thread. Each stage of the
pipeline maintains an input queue holding pointers to CSMs,
and the CSMs in this queue represent those that are to be
processed by that stage. The queues themselves represent the
shared state of the pipeline, and access to them is synchronized
through the use of locks and condition variables. Each stage
implements true transfer of ownership, that is, upon com-
pletely processing a CSM in the input queue, the stage will
remove its reference from its queue and add it to its successor’s
queue. Thus, no two stages are capable of accessing the same
CSM simultaneously.
The master thread typically represents the process’s main

thread of execution and is responsible for the creation of the
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Figure 5. The parallel pipelined architecture. Input data are transformed into CSMs at Stage 1 and sent down the pipeline to Stage 2. Stage 2’s worker
threads will either compute the CBF weights for each CSM or compute the SVD of the input data as appropriate and then transfer the results to either Stage 3
(in the case of ABF) or to Stage 4 (in the case of CBF). Stage 3 computes the ABF weights for each CSM passed to it on the GPU, then passes the results
to Stage 4. Worker threads in Stage 4 will perform final application of weights to the input data for each of the CSMs. Once all CSMs have been processed,
Stage 4 signals to Stage 1 the completion of the pipeline, at which point Stage 1 will write out the final beamformed data.

pipeline and all its stages along with all worker threads that are
used by the pipeline. By design, Stage 1 executes within the
master thread, thus all worker threads created are distributed
amongst Stages 2-4. Since Stage 3 represents the stage where
the GPU computations are performed, it is allocated exactly
one thread. Additional threads do not need to be allocated
since contexts to the graphics hardware cannot be safely
shared across threads. The remainder of the worker threads are
allocated between Stage 2 and Stage 4 according to external
parameters that the user can adjust in order to achieve optimal
load balancing of the pipeline.
The primary role of Stage 1 is to read in the FFTed

input data and divide it into the frequency-independent CSM
structures. In addition to the FFTed acoustic data, additional
data elements are associated with the CSM, including the
steering vectors and any additional processing parameters
supplied externally. As a new CSM is created, it is added
immediately to Stage 2’s input queue. Once all CSMs have
been created from the input data, Stage 1 enters a suspended
state where it will wait for a signal from Stage 4. Upon
receiving this signal, Stage 1 will resume execution, where
it will write all beamformed CSMs to the output data stream.
Upon receiving a CSM, one of Stage 2’s worker threads

will claim ownership of the CSM and determine whether CBF
or ABF is to be performed on it. If CBF is requested, the
thread will then derive CBF weights for the CSM based on
the associated steering vectors. If ABF is requested, the thread

performs an SVD over the CSM’s input data and stores the
resulting singular values and singular vectors with the CSM.
The thread will then send the CSM to either Stage 3 or
Stage 4, depending on whether the CSM will have ABF or
CBF performed on it, respectively.
Stage 3 implements the kernel that is executed on the

Geforce 8800 GTX. For performance considerations, this stage
will wait until some number of CSMs are present in its input
queue. Currently, this number is set to 32, which is two times
the number of multiprocessors on the Geforce 8800 GTX.
Once the number of CSMs equals the prescribed amount, those
CSMs are transferred to the GPU, and the kernel is invoked
for ABF weight derivation.
The GPU kernel partitions the grid into a number of thread

blocks, as described in Section III-B on page 6. Specifically,
the number of thread blocks is set to the number of CSMs
transferred to the GPU. Since the GPU schedules a thread
block to execute on a single multiprocessor, this effectively
maps two CSMs per multiprocessor on the Geforce 8800
GTX. I exploit the finer-level of parallelism described in Sec-
tion IV-A on page 7 by setting the number of threads per thread
block to be the number of steering directions per CSM for
which weights are derived; therefore, ultimately, a single GPU
thread computes the weights for a single frequency-direction
combination. Once all ABF weights have been derived on
the GPU, the results are transferred back from the device to
the host, and Stage 3’s worker thread transfers the processed
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CSMs, along with their ABF weights, to Stage 4.
Stage 4 performs the final application of the computed

beamforming weights to the input data of each CSM. For
each CSM in its input queue, one of Stage 4’s worker threads
simply takes ownership of one of the CSMs and multiplies the
weight matrix derived in Stage 2 or Stage 3 with the CSM’s
input data matrix. The CSM and final beamformed data are
then transferred back to Stage 1.
Once all CSMs have been processed, Stage 4 sends a signal

to Stage 1. At this time Stage 1 resumes from its suspended
state and writes all beamformed data and any additional
information requested by the user, e.g. final weights derived,
etc., to the output data stream. Once all beamformed data has
been written, Stage 1 stops, and the master thread deallocates
all resources used by the pipeline prior to exiting.

V. TESTING AND RESULTS
The system used for testing consists of a desktop PC running

a 64-bit version of Red Hat Enterprise Linux 4 Update 4 and
containing two Intel Xeon 5140 2.33 GHz dual-core CPUs
with 4 GB of RAM. The hardware specifications of the Xeon
5140 are similar to that of the Xeon 5160 shown in Table I
on page 5. The Geforce 8800 GTX is also installed in this
system.
The entire beamformer is primarily implemented in Matlab,

and only the core ABF procedure has been rewritten to utilize
the GPU. The code for this has been incorporated in a Matlab
MEX object, which is Matlab’s means of interoperating C/C++
code with Matlab code. In addition to a GPU-based kernel, a
serial implementation written entirely in C has been written
in order to provide a comparison between the GPU kernel
and the Matlab reference implementation. The raw runtime
performance of the beamformer was evaluated for a fixed input
data set. The results are summarized in Figure 6.

Matlab reference GPU Parallel C Serial
0.0

0.5

1.0

1.5

Figure 6. Relative runtime performance of the adaptive beamformer. All
runtime performances are normalized and relative to the Matlab reference
implementation. Here, lower is better.

As can be seen, the GPU kernel performs twice as fast as the
Matlab reference implementation, but only at half the speed
of the serial C implementation. This factor of two slowdown
can be attributed to the following:

• The current GPU kernel makes no use of the multipro-
cessor’s shared memory nor does it coalesce memory
transactions to the GPU’s global memory.

• There are currently no optimized linear algebra libraries
for CUDA, whereas the CPU makes use of highly
optimized BLAS and LAPACK routines for much of
its linear algebra. This primarily includes matrix-matrix
operations, matrix-vector operations, and most notably
the SVD factorization routine.

• Currently, improper load balancing of the pipeline ar-
chitecture creates stalls at various stages, most notably
between Stage 2 and Stage 3.

The lack of use of shared memory has been deliberately
done in order to simplify the initial implementation of the
GPU kernel. Proper use of shared memory will require further
examination of data access patterns in order to determine the
best way to stream data through the GPU’s parallel data cache.
Nevertheless, it has been observed that by making proper use
of shared memory and, more importantly, coalescing reads and
writes from and to global memory, performance on the Geforce
8800 GTX can increase by an order of magnitude [40].
The lack of linear algebra libraries for GPU kernels written

with CUDA also poses a problem. General-purpose systems
have had the advantage of having libraries such as BLAS
and LAPACK tweaked and optimized for various processor
architectures over the past several decades. General-purpose
computation on GPUs will, similarly, greatly benefit in terms
of increased performance once more optimized libraries be-
come available for use within device code.
Finally, the current pipelined architecture requires better

load balancing between its stages, specifically between Stage
2 and Stage 3 and between Stage 3 and Stage 4. Stage 2
currently stalls as it waits for Stage 3 to remove CSMs out
of its input queue, and Stage 4, similarly, waits for Stage 3 to
transfer processed CSMs to Stage 4’s input queue. These stalls
can partially be alleviated by simply optimizing Stage 3’s GPU
kernel to utilize some of the suggestions already discussed.

VI. FUTURE WORK

From this point, work can progress in one of two different
directions:
1) Further develop, profile, and optimize the existing
pipelined architecture.

2) Create a functioning pure GPU kernel, thus obviating
the need for the pipelined architecture.

In either case, devising ways to make better use of the GPU’s
shared memory presents itself as the most fruitful means of
improving the kernel. As was pointed out in Section V, proper
coalescing of memory transactions to and from shared memory
can improve runtime performance by an order of magnitude.
However, there are caveats when optimizing the kernel’s

use of shared memory that one must consider. For example,
while properly coalesced memory accesses give multiple GPU
threads the capability to execute an instruction that will
transfer either 32-, 64-, or 128-bit chunks of data at once, only
those access patterns that handle 32 bits of data per transaction,
per thread will realize fully the potential increase in speed [39].
Furthermore, due to the small amount of memory available
in the parallel data cache on each multiprocessor, data sets
for each CSM may or may not completely fit within shared
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memory as beamforming parameters vary. Because no cache
exists between the GPU’s global and shared memory, it would
also, in general, be beneficial to implement some caching
mechanism that keeps frequently used data within shared
memory as long as possible while streaming in and out less
frequently used data.
In addition to making the best use of the GPU’s shared

memory, further work on the actual parallel pipelined archi-
tecture can yield further enhancements to the overall beam-
former’s performance. Due to length of time required for
Stage 3 to derive ABF weights, it is unable to clear space
within its input queue in a timely manner. This results in
a stall between Stage 2 and Stage 3 as Stage 2 attempts to
write its results to Stage 3’s already-filled input queue. Upon
failing to do so, Stage 2 enters a suspended state until Stage
3 signals that queue space has been made available. Again,
improving the runtime performance of the GPU kernel through
the use of shared memory can help minimize stalling and
potentially increase the overall throughput of the beamformer.
Upon optimizing Stage 3, further load balancing would be
necessary as certain stages become more or less of bottlenecks
in the overall system. In response to these varying dynamics,
a pipeline with the ability to load balance itself at runtime in
response to changing parameter and data sets would prove
to be an interesting and possibly fruitful extension to the
existing architecture in terms of further improving the runtime
performance of the beamformer.
An alternative approach to improving on the existing ar-

chitecture would to write a kernel that performed the entire
beamforming procedure on the GPU. The obvious hurdle to
this approach is the current lack of a functioning SVD on the
GPU. However, certain algorithms such as one-sided Jacobi
methods, which have been known to parallelize well, could be
explored and implemented for the GPU. Once implemented,
the entire parallel pipelined architecture could, in theory, be
discarded because all the software components necessary for
beamforming on the GPU would be available. In practice,
though, since the CPU would otherwise be idle as it waits
for the GPU to derive the ABF weights, some amount of
pipelining would be desired in order to make better utilization
of the existing hardware.
In such a case, it would seem to prove most reasonable

to divide the CPU and GPU workloads based upon the type
of beamforming being performed. Since the derivation of
CBF weights is simply done by computing the norms of the
steering vectors and applying these to the sensor data via a
matrix multiplication, a pool of worker threads can easily
perform these relatively simple operations on the CPU, thereby
avoiding the penalty incurred by transferring data across the
PCI-Express bus for such a relatively minute amount of work.
The GPU could then continue to derive the ABF weights in
parallel and apply them to their corresponding sensor data.

VII. CONCLUSIONS

I have demonstrated a software architecture that performs
adaptive beamforming utilizing an NVIDIA Geforce 8800
GTX GPU using CUDA. While the initial results have shown

that the GPU-based approach results in less throughput than
a serial C implementation, factors for this apparent slowdown
have been identified and possible means of optimization have
been proposed and discussed. With further optimizations, I
expect the GPU kernel to meet, if not exceed, the performance
of the serial C implementation.
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